Question Number	Acceptable Answers	Mark
1(a)(i)	Measures the final interval = 2.2 cm Or measures the total distance = 14.6cm (1) Velocity = 1.1 (mc^{-1})	2
	(1) (independent marks, even if MP1 not awarded, 2^{nd} mark can be awarded if value rounds to $1.1(ms^{-1})$)	
	Example of calculation Velocity = $\frac{0.022 \text{ m}}{0.02 \text{ s}}$ or Velocity = $\frac{0.146 \text{ m} \times 2}{0.02 \text{ s} \times 13}$ Velocity = 1.1 m s^{-1}	

Question	Acceptable Answers		Mark
Number			
1(a)(ii)	Use of $a = \frac{v - u}{t}$ or suitable equation of motion to calculate <i>a</i>	(1)	
	$a = 4.2 \text{ or } 4.3 \text{ m s}^{-2}$ (allow full ecf for values substituted from (i))	(1)	
	(in (i) and (ii) only penalise once for use of 14 gaps)		2
	Example of calculation		
	Using $a = \frac{v - u}{t}$		
	$a = \frac{1.1 \mathrm{m s^{-1}} - 0}{13 \times 0.02 \mathrm{s}}$		
	$a = 4.2 \text{ m s}^{-2}$		

Question	Acceptable Answers		Mark
Number			
1(b)	No friction/drag between tape/trolley and timer.		
	Or		
	The computer does the calculation		
	Or		
	Student doesn't calculate velocity	(1)	1
	(NOT precision, accuracy, plots graph automatically, reaction time,		
	parallax, human error)		
	Total for question		5

PhysicsAndMathsTutor.com

Question	Answer	Mark
	Show that the encoderation is about 2 m s^{-2}	
Z (a)	Show that the acceleration is about 2 m s .	
	Use of equation of motion suitable to find acceleration	(1)
	Correct answer (1.5 (m s ⁻²))	(1)
	Example of calculation	
	$S = UI + 1/2 aT^{2}$	
	$a = 2 \times 2 500 000 \text{ m} 7 ((30 \times 60)\text{ s})$ = 1 54 m s ⁻²	
	- 1.0+ 111 3	
2 (b)	Calculate the maximum speed.	
	the effective of method witching to find methods and	(1)
	Use of equation of motion suitable to find maximum speed Correct answer (2700 m c^{-1})	(1)
		(I)
	Example of calculation	
	$\overline{v = u + at}$	
	$= 0 + 1.5 \text{ m s}^{-2} \text{ x} (30 \text{ x} 60) \text{ s}$	
	$= 1.5 \text{ m s}^{-2} \text{ x} (30 \text{ x} 60) \text{ s}$	
	$= 2/00 \text{ m s}^{-1}$ (Use of 2 m s ⁻² \rightarrow 2600 m s ⁻¹ 1 54 m s ⁻² \rightarrow 2772 m s ⁻¹)	
2 (c)	Calculate the force which must be applied to decelerate the	
2 (0)	train.	
	Use of F = ma	(1)
	Correct answer (680 000 N)	(1)
	Example of calculation	
	F = ma	
	$= 4.5 \times 10^5 \text{ kg} \times 1.5 \text{ m} \text{ s}^{-2}$	
	= 675 000 N	
	(Use of 2 m s ⁻² → 900 000 N, 1.54 m s ⁻² → 693 000 N)	
	Total for question	6

Question Number	Answer	Mark
3(a)(i)	Use of $v^2 = u^2 + 2as$ (1) $a = 2.9 \text{ (m s}^{-2}$) (1)	2
	Example of calculation $(15 \text{ m s}^{-1})^2 - (0 \text{ m s}^{-1})^2$	
	$a = \frac{(15 \text{ m/s}^2)^2 (0 \text{ m/s}^2)}{2 \times 39 \text{ m}}$	
	$a = 2.88 \text{ m s}^{-2}$	
3(a)(ii)	Use of $F = ma$ to find a or F (1) Maximum $a = 3.2 \text{ m s}^{-2}$	
	Or Force in (a)(i) $F = 580$ N(or 600 N) (1)	
	$(3.2 \text{ m s}^{-2} \text{ is the maximum acceleration because})$ the box must have	
	the same acceleration as the lorry (1)	3
	Example of calculation a = 630N/200 kg	
	$a = 3.15 \text{ m s}^{-2}$	
3(b)(i)	$W_{\text{parallel}} = W \sin \theta \tag{1}$ $W_{\text{parallel}} = W \cos \theta \tag{1}$	2
	(A coept mg = 200g or 1962 for W)	
3(b)(ii)	$F = W \sin\theta \text{ Or } F = W_{\text{parallel}} \text{ Or } R = W \cos\theta \text{ Or } R = W_{\text{perpendicular}} $ (1)	
	Substitute $F = 0.32R$ into candidate's equation for F or R (1)	
	Use of $\sin\theta/\cos\theta = \tan\theta$ (1)	
	$\theta = 18^{\circ} \tag{1}$	4
	Total for question	11

Question Number	Answer		Mark
4(a)	Correct trajectory	(1)	1
	e.g.		
4(b)(i)	Use of trig function appropriate to calculate the horizontal component of velocity $\mathbf{Or} \ 2.25 \ (m \ s^{-1})$ seen	(1)	
	Use of $v = s/t$	(1)	
	time = 0.67 (s)	(1)	3
	Example of calculation $u_{\rm h} = 4.5 \text{ m s}^{-1} \times \cos 60^{\circ} = 2.25 \text{ m s}^{-1}$ $t = \frac{41.01}{0.014}$ t = 0.67 s		
4(b)(ii)	Use of trig function appropriate to calculate the vertical component of velocity \mathbf{Or} 3.9 (m s ⁻¹) seen	(1)	
	Use of suitable equation(s) of motion to find the vertical displacement from the release point after 0.67 s	(1)	
	Displacement from release point = $0.41 - 0.42$ m (ecf for <i>t</i> from (b)(i))	(1)	
	(show that value of 0.7 s gives displacement = $0.32 \text{ m} - 0.33 \text{ m}$)		
	Statement to explain why the ball will miss/overshoot the ring e.g. the ball passes below the net Or the ball will not have reached the height of the ring yet Or $0.41 < 0.7$ Or ball undershoots ring (Explanation must be consistent with the calculated value of displacement)	(1)	4
	Example of calculation $u_v = 4.5 \text{ m s}^{-1} \times \sin 60^\circ = 3.9 \text{ m s}^{-1}$ $s = (3.9 \text{ m s}^{-1} \times 0.67 \text{ s}) + (-\frac{1}{2} \times 9.81 \text{ m s}^{-2} \times (0.67 \text{ s})^2)$ s = 0.41 m		
4(b)(iii)	The ball would be travelling with a decreasing (horizontal) speed Or there would be a (horizontal) deceleration	(1)	
	The (calculated) time would increase	(1)	2
	Total for question		10

Question	Answer		Mark
Number			
5(a)	$a = \Delta v$		
	(Use of) acceleration – gradient Or $\frac{a - \overline{(\Delta)t}}{(\Delta)t}$ stated		
	v-u	(1)	
	Or use of $a = \frac{1}{z}$ with $u > 1$	(1)	
	A normalized in manage 2.0 to 2.8 ($m e^{-2}$)	(1)	
	Answers in range 2.1 to 2.5 m s ⁻²	(1)	3
5(b)	Max 4		
0(0)	changing gradient Or graph curves	(1)	
	The idea of a changing acceleration	(1)	
	Decreasing acceleration	(1)	
	Resultant force decreasing	(1)	
	Drag increases (with speed)	(1)	4
5 (a)	[Ignore references to initial constant acceleration/straight line initially/ $(0-3)$ s]	(1)	1
5(0)	Zero (no u.e.) Or there is no resultant force	(1)	I
5(d)	Attempt to find total distance travelled	(1)	
0(0)	Distance in range 900 (m) to 1100 (m)	(1)	
	Use of speed = distance / time	(1)	
	Speed = 20.0 to 21.0 (m s ⁻¹)	• •	
	Or comparison of their distance with 1100m	(1)	
	[A number of incorrect methods give the value of $20 - 21 \text{ m s}^3$. Only give final		
	mark if correct method used using total distance and time of 50 s.		
	OR		
	Use of line at 22 m s ^{-1}	(1)	
	Use of area under graph	(1)	
	Simple comparison of area between graph and line above and below the line	(1)	
	(e.g. more below than above)		4
	Quantitative comparison (e.g. 60 (m) above and 140 (m) below)	(1)	
	Total for question		12

Question	Answer		Mark
Number			
6 (a)(i)	State or show $E_p \rightarrow E_k$ (1)		
	$mgh = \frac{1}{2} mv^2$ Or $gh = \frac{1}{2} v^2$ (1)		
	Use of $mgh = \frac{1}{2} mv^2$ Or $gh = \frac{1}{2} v^2$ (1)		
	$v = 3.4 \text{ (m s}^{-1}) \text{ [no ue]}$ (1)		4
	Calculation using $v^2 = u^2 + 2as$ scores 0 marks		
	Use of $g = 10 \text{ N kg}^{-1}$ gives 3.46 m s ⁻¹ , 3.5 m s ⁻¹ , max 3 marks		
	Do not credit bald answer		
	(Candidates may calculate in steps using $m = 40$ kg, mark 2 becomes u	ise	
	of $E_p = mgh$ and mark 3 becomes use of $E_k = \frac{1}{2} mv^2$)		
	Example of calculation		
	$E_p = E_k$		
	$mgh = 1/2 mv^2$		
	$gh = 1/2 v^2$		
	9.81 N kg ⁻¹ x 0.6 m = $1/2 v^2$		
	$v = 3.4 \text{ m s}^{-1}$		
6 (a)(ii)	All $E_p \rightarrow E_k$ / no friction/air resistance / no stretch of cable / $u = 0$ / r	no	
	push at start / no energy transferred to other forms (1)		1
	(No energy lost is not sufficient.)		
6(D)(I)	Label 2 x tension (7) parallel to cable and away from P only (1)		2
	Laber weight / pull of child / <i>W</i> / <i>mg</i> vertically downward (1)		Z
	One correct and one incorrect scores 1 mark. Two correct and one		
	incorrect scores 1 mark. Two incorrect scores 0.		
	Ignore unlabelled arrows.		
6 (b)(ii)	Use of $W = mg$ (1)		
	Use of correct trigonometrical function (T sin $2 = W/2$)(accept with		
	missing factor 2, i.e. T sin $2^{\circ} = W$)(do not accept tan) (accept cos 88)(1)	2
	Force = 5600 (N) [no ue] (1)		3
	Accept calculation of 11 200 N divided by 2 at the end for full marks o	only	
	If accompanied by an explanation, such as 'there are two cables'		
	Example of calculation		
	W = mg		
	$W = 40 \text{ kg x } 9.81 \text{ N kg}^{-1} = 392 \text{ N}$		
	$T\sin 2^\circ = W/2$		
	$T = 392 \text{ N} / 2 \text{ x sin } 2^{\circ}$		
	T = 5621 N		
	Total for question		10
			10

Question	Answer	Mark
Number		
7 (a)	Explain why the coin on the ruler has no horizontal motion	
	Max 2 points – (Max 1 if no reference to force / friction)	
	(Smooth surface so) no friction (1)	
	No horizontal force / only vertical forces (1)	
	So (from Newton's first law) no horizontal acceleration / no change in	(Max 2)
	horizontal velocity (1)	(11111 =)
7(b)	Explain how this demonstrates the independence of horizontal and vertical	
	motion	
	They have the same vertical acceleration / force / motion / (instantaneous)	
	velocity (1)	(2)
	Although only one has horizontal motion/velocity (1)	
7(c)	Show that the coin on the ruler strikes the ground with a speed of about 4 $\frac{1}{1}$	
	ms	
	Use of $y^2 - y^2 + 2as OP$ Use of met $-16my^2$ Or other correct combinations	
	of equations of motion (1)	(2)
	Correct answer (4.1 m s^{-1}) (1)	(2)
	Example of calculation	
	$v^2 = u^2 + 2as$	
	$v^2 = 2 \ge 9.81 \text{ m s}^{-2} \ge 0.85 \text{ m}$	
	$= 4.1 \text{ m s}^{-1}$	
7(d)	Calculate the velocity at which it strikes the ground.	
	Use of distance/time for horizontal speed (1)	
	Use of Pythagoras with velocity components (1) Correct answer for resultent velocity magnitude [4.0 m s^{-1}] (1)	
	Use of trigonometrical function with velocities for the angle (1)	
	Correct answer for angle [58°] (1)	(5)
	OR	
	Use of distance/time for horizontal speed (1)	
	Use of trigonometrical function with velocity components for the angle (1)	
	Correct answer for angle [58°] (1)	
	Use of trigonometrical function for the resultant velocity magnitude (1)	
	Correct answer for resultant velocity magnitude $[4.9 \text{ m s}^{-1}]$ (1)	
	[Allow of from more 2 of the coloulation in this mostion]	
	[Allow eci from mark 3 of the calculation in this question]	
	Example of calculation	
	$v = s/t = 1.1 \text{ m} / 0.42 \text{ s} = 2.6 \text{ m s}^{-1}$	
	$v^2 = v_h^2 + v_v^2$	

$= (2.6 \text{ m s}^{-1})^2 + (4.1 \text{ m s}^{-1})^2$	
$v = 4.9 \text{ m s}^{-1}$	
from horizontal, tan (angle) = 4.1 m s ⁻¹ / 2.6 m s ⁻¹	
angle = 58°	
(N.B. Use of 4 m s^{-1} gives and answer of 4.8 m s^{-1} and 57°)	
Total for question	11