Question Number	Acceptable Answers	Mark
$\mathbf{1 (a) (i)}$	Measures the final interval $=2.2 \mathrm{~cm}$ Or measures the total distance $=14.6 \mathrm{~cm}$ Velocity $=1.1\left(\mathrm{~ms}^{-1}\right)$ (1) (independent marks, even if MP1 not awarded, ${ }^{\text {nd }}$ mark can be awarded if value rounds to $\left.1.1\left(\mathrm{~ms}^{-1}\right)\right)$	$\mathbf{2}$
Example of calculation Velocity $=\frac{0.022 \mathrm{~m}}{0.02 \mathrm{~s}}$ Velocity $=1.1 \mathrm{~m} \mathrm{~s}^{-1}$$\quad$ or \quad Velocity $=\frac{0.146 \mathrm{~m} \times 2}{0.02 \mathrm{~s} \times 13}$		

Question Number	Acceptable Answers	Mark
$\mathbf{1 (a) (i i) ~}$	Use of $a=\frac{v-u}{t}$ or suitable equation of motion to calculate a $\mathrm{a}=4.2$ or $4.3 \mathrm{~m} \mathrm{~s}^{-2}$ (allow full ecf for values substituted from (i)) (in (i) and (ii) only penalise once for use of 14 gaps) Example of calculation Using $a=\frac{v-u}{t}$ $a=\frac{1.1 \mathrm{~m} \mathrm{~s}^{-1}-0}{13 \times 0.02 \mathrm{~s}}$ $\mathrm{a}=4.2 \mathrm{~m} \mathrm{~s}^{-2}$	2

Question Number	Acceptable Answers	Mark
$\mathbf{1 (b)}$	No friction/drag between tape/trolley and timer. Or The computer does the calculation Or Student doesn't calculate velocity (NOT precision, accuracy, plots graph automatically, reaction time, parallax, human error)	$\mathbf{1}$
	Total for question	$\mathbf{1}$

Question Number	Answer	Mark
2(a)	Show that the acceleration is about $2 \mathrm{~m} \mathrm{~s}^{-2}$. Use of equation of motion suitable to find acceleration Correct answer ($1.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$) $\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\ \mathrm{a}=2 \times 2500000 \mathrm{~m} /((30 \times 60) \mathrm{s})^{2} \\ =1.54 \mathrm{~m} \mathrm{~s}^{-2} \end{array} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
2 (b)	Calculate the maximum speed. Use of equation of motion suitable to find maximum speed Correct answer ($2700 \mathrm{~m} \mathrm{~s}^{-1}$) $\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} v=u+a t \\ =0+1.5 \mathrm{~m} \mathrm{~s}^{-2} \times(30 \times 60) \mathrm{s} \\ =1.5 \mathrm{~m} \mathrm{~s}^{-2} \times(30 \times 60) \mathrm{s} \\ =2700 \mathrm{~m} \mathrm{~s}^{-1} \end{array} \end{aligned}$ $\text { (Use of } 2 \mathrm{~m} \mathrm{~s}^{-2} \rightarrow 3600 \mathrm{~m} \mathrm{~s}^{-1}, 1.54 \mathrm{~m} \mathrm{~s}^{-2} \rightarrow 2772 \mathrm{~m} \mathrm{~s}^{-1} \text {), }$	$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$
2 (c)	Calculate the force which must be applied to decelerate the train. Use of $\mathrm{F}=\mathrm{ma}$ Correct answer (680000 N)	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
	Total for question	6

Question Number	Answer		Mark
3(a)(i)	$\begin{aligned} & \text { Use of } v^{2}=u^{2}+2 a s \\ & a=2.9\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ Example of calculation $\begin{aligned} & a=\frac{\left(15 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}-\left(0 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}{2 \times 39 \mathrm{~m}} \\ & a=2.88 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3(a)(ii)	Use of $F=m a$ to find a or F Maximum $a=3.2 \mathrm{~m} \mathrm{~s}^{-2}$ Or Force in (a)(i) $F=580 \mathrm{~N}$ (or 600 N) ($3.2 \mathrm{~m} \mathrm{~s}^{-2}$ is the maximum acceleration because) the box must have the same acceleration as the lorry Example of calculation $\begin{aligned} & a=630 \mathrm{~N} / 200 \mathrm{~kg} \\ & a=3.15 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	(1) (1) (1)	3
3(b)(i)	$\begin{aligned} & W_{\text {parallel }}=W \sin \theta \\ & W_{\text {perpendicular }}=W \cos \theta \end{aligned}$ (Accept $m g, 200 g$ or 1962 for W)	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3(b)(ii)	$F=W \sin \theta \text { Or } F=W_{\text {parallel }} \text { Or } R=W \cos \theta \text { Or } R=W_{\text {perpendicular }}$ Substitute $F=0.32 R$ into candidate's equation for F or R Use of $\sin \theta / \cos \theta=\tan \theta$ $\theta=18^{\circ}$	(1) (1) (1) (1)	4
	Total for question		11

Question Number	Answer		Mark
4(a)	Correct trajectory e.g.	(1)	1
4(b)(i)	Use of trig function appropriate to calculate the horizontal component of velocity Or $2.25\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ seen Use of $v=s / t$ $\text { time }=0.67(\mathrm{~s})$ Example of calculation $\begin{aligned} & u_{\mathrm{h}}=4.5 \mathrm{~m} \mathrm{~s}^{-1} \times \cos 60^{\circ}=2.25 \mathrm{~m} \mathrm{~s}^{-1} \\ & t=47 \mathrm{~m} \\ & t=0.67 \mathrm{~s} \end{aligned}$	(1) (1) (1)	3
4(b)(ii)	Use of trig function appropriate to calculate the vertical component of velocity Or $3.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ seen Use of suitable equation(s) of motion to find the vertical displacement from the release point after 0.67 s Displacement from release point $=0.41-0.42 \mathrm{~m}(\mathrm{ecf}$ for t from (b)(i)) (show that value of 0.7 s gives displacement $=0.32 \mathrm{~m}-0.33 \mathrm{~m}$) Statement to explain why the ball will miss/overshoot the ring e.g. the ball passes below the net Or the ball will not have reached the height of the ring yet Or $0.41<0.7$ Or ball undershoots ring (Explanation must be consistent with the calculated value of displacement) Example of calculation $\begin{aligned} & u_{\mathrm{v}}=4.5 \mathrm{~m} \mathrm{~s}^{-1} \times \sin 60^{\circ}=3.9 \mathrm{~m} \mathrm{~s}^{-1} \\ & s=\left(3.9 \mathrm{~m} \mathrm{~s}^{-1} \times 0.67 \mathrm{~s}\right)+\left(-1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times(0.67 \mathrm{~s})^{2}\right) \\ & s=0.41 \mathrm{~m} \end{aligned}$	(1) (1) (1) (1)	4
4(b)(iii)	The ball would be travelling with a decreasing (horizontal) speed Or there would be a (horizontal) deceleration The (calculated) time would increase	(1) (1)	2
	Total for question		10

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& \multicolumn{2}{|l|}{Answer} \& Mark \\
\hline 5(a) \& \begin{tabular}{l}
(Use of) acceleration = gradient Or \(\quad \begin{aligned} \& a=\frac{\Delta v}{(\Delta) t} \\ \& \text { stated }\end{aligned}\) \\
Or use of \(a=\frac{v-u}{t}\) with \(u>1\) \\
Answers in range 2.0 to \(2.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)\) \\
Answers in range 2.1 to \(2.5 \mathrm{~m} \mathrm{~s}^{-2}\)
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1)
\end{tabular} \& 3 \\
\hline 5(b) \& \begin{tabular}{l}
Max 4 \\
changing gradient Or graph curves \\
The idea of a changing acceleration \\
Decreasing acceleration \\
Resultant force decreasing \\
Drag increases (with speed) \\
[Ignore references to initial constant acceleration/straight line initially/(0-3) s]
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1) \\
(1) \\
(1)
\end{tabular} \& 4 \\
\hline 5(c) \& Zero (no u.e.) Or there is no resultant force \& (1) \& 1 \\
\hline 5(d) \& \begin{tabular}{l}
Attempt to find total distance travelled \\
Distance in range \(900(\mathrm{~m})\) to \(1100(\mathrm{~m})\) \\
Use of speed = distance / time \\
Speed \(=20.0\) to \(21.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\) \\
Or comparison of their distance with 1100 m \\
[A number of incorrect methods give the value of \(20-21 \mathrm{~m} \mathrm{~s}^{-1}\). Only give final mark if correct method used using total distance and time of 50 s .] \\
OR \\
Use of line at \(22 \mathrm{~m} \mathrm{~s}^{-1}\) \\
Use of area under graph \\
Simple comparison of area between graph and line above and below the line (e.g. more below than above) \\
Quantitative comparison (e.g. \(60(\mathrm{~m})\) above and \(140(\mathrm{~m})\) below)
\end{tabular} \& (1)
(1)
(1)
(1)

(1)
(1)
(1)
(1) \& 4 \\
\hline \& Total for question \& \& 12 \\
\hline
\end{tabular}

Question Number	Answer	Mark
6(a)(i)	```State or show \(E_{p} \rightarrow E_{k}\) \(m g h=1 / 2 m v^{2}\) Or \(g h=1 / 2 v^{2}\) Use of \(m g h=1 / 2 m v^{2}\) Or \(g h=1 / 2 v^{2}\) \[\begin{equation*} v=3.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)[\text { no ue }] \tag{1} \end{equation*} \] \\ Calculation using \(v^{2}=u^{2}+2\) as scores 0 marks \\ Use of \(g=10 \mathrm{~N} \mathrm{~kg}^{-1}\) gives \(3.46 \mathrm{~m} \mathrm{~s}^{-1}\), \(3.5 \mathrm{~m} \mathrm{~s}^{-1}\), max 3 marks Do not credit bald answer (Candidates may calculate in steps using \(\mathrm{m}=40 \mathrm{~kg}\), mark 2 becomes use of \(E_{p}=m g h\) and mark 3 becomes use of \(E_{k}=1 / 2 \mathrm{mv}^{2}\)) \[\begin{aligned} & \frac{\text { Example of calculation }}{E_{p}=E_{k}} \\ & m g h=1 / 2 m v^{2} \\ & g h=1 / 2 v^{2} \\ & 9.81 \mathrm{~N} \mathrm{~kg}^{-1} \times 0.6 \mathrm{~m}=1 / 2 v^{2} \\ & v=3.4 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \]```	4
6(a)(ii)	All $E_{p} \rightarrow E_{k} /$ no friction/ air resistance / no stretch of cable / u $=0 /$ no push at start / no energy transferred to other forms (No energy lost is not sufficient.)	1
6(b)(i)	Label $2 x$ tension (T) parallel to cable and away from P only Label weight / pull of child / W / mg vertically downward One correct and one incorrect scores 1 mark. Two correct and one incorrect scores 1 mark. Two incorrect scores 0. Ignore unlabelled arrows.	2
6(b)(ii)	Use of $W=m g$ Use of correct trigonometrical function ($\mathrm{T} \sin 2=\mathrm{W} / 2$) (accept with missing factor 2, i.e. $\mathrm{T} \sin 2^{\circ}=\mathrm{W}$) (do not accept tan) (accept $\left.\cos 88\right)(1)$ Force $=5600$ (N) [no ue] Accept calculation of 11200 N divided by 2 at the end for full marks only if accompanied by an explanation, such as 'there are two cables' $\begin{aligned} & \text { Example of calculation } \\ & W=m g \\ & W=40 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}=392 \mathrm{~N} \\ & T \sin 2^{\circ}=W / 2 \\ & T=392 \mathrm{~N} / 2 \times \sin 2^{\circ} \\ & T=5621 \mathrm{~N} \end{aligned}$	3
	Total for question	10

Question Number	Answer	Mark
7 (a)	Explain why the coin on the ruler has no horizontal motion Max 2 points - (Max 1 if no reference to force / friction) Initially at rest (1) (Smooth surface so) no friction (1) No horizontal force / only vertical forces (1) So (from Newton's first law) no horizontal acceleration / no change in horizontal velocity (1)	(Max 2)
7(b)	Explain how this demonstrates the independence of horizontal and vertical motion They have the same vertical acceleration / force / motion / (instantaneous) velocity (1) Although only one has horizontal motion/velocity (1)	(2)
7(c)	Show that the coin on the ruler strikes the ground with a speed of about 4 ms^{-1} Use of $v^{2}=u^{2}+2$ as OR Use of $m g h=1 / 2 m v^{2}$ Or other correct combinations of equations of motion (1) Correct answer ($4.1 \mathrm{~m} \mathrm{~s}^{-1}$) (1) Example of calculation $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & v^{2}=2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 0.85 \mathrm{~m} \\ & =4.1 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(2)
7(d)	Calculate the velocity at which it strikes the ground. Use of distance/time for horizontal speed (1) Use of Pythagoras with velocity components (1) Correct answer for resultant velocity magnitude $\left[4.9 \mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) Use of trigonometrical function with velocities for the angle (1) Correct answer for angle [58 ${ }^{\circ}$] (1) OR Use of distance/time for horizontal speed (1) Use of trigonometrical function with velocity components for the angle (1) Correct answer for angle [58] (1) Use of trigonometrical function for the resultant velocity magnitude (1) Correct answer for resultant velocity magnitude [$4.9 \mathrm{~m} \mathrm{~s}^{-1}$] [Allow ecf from mark 3 of the calculation in this question] Example of calculation $\begin{aligned} & v=s / t=1.1 \mathrm{~m} / 0.42 \mathrm{~s}=2.6 \mathrm{~m} \mathrm{~s}^{-1} \\ & v^{2}=v_{h}{ }^{2}+v_{v}{ }^{2} \end{aligned}$	(5)

	$=\left(2.6 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+\left(4.1 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$	
$v=4.9 \mathrm{~m} \mathrm{~s}^{-1}$		
from horizontal, tan (angle) $=4.1 \mathrm{~m} \mathrm{~s}^{-1} / 2.6 \mathrm{~m} \mathrm{~s}^{-1}$		
angle $=58^{\circ}$		
(N.B. Use of $4 \mathrm{~m} \mathrm{~s}^{-1}$ gives and answer of $4.8 \mathrm{~m} \mathrm{~s}^{-1}$ and $\left.57^{\circ}\right)$		
Total for question	$\mathbf{1 1}$	

